
Universal restrictions to the conversion of heat into work derived from the analysis of the

Nernst theorem as a uniform limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 7909

(http://iopscience.iop.org/0305-4470/36/29/303)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/29
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 7909–7921 PII: S0305-4470(03)58987-9

Universal restrictions to the conversion of heat into
work derived from the analysis of the Nernst theorem
as a uniform limit
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Abstract
We revisit the relationship between the Nernst theorem and the Kelvin–Planck
statement of the second law. We propose that the exchange of entropy uniformly
vanishes as the temperature goes to zero. The analysis of this assumption shows
that is equivalent to the fact that the compensation of a Carnot engine scales
with the absorbed heat so that the Nernst theorem should be embedded in the
statement of the second law.

PACS numbers: 05.70.a, 05.70.Ce

1. Introduction

The classical formulation of the Kelvin–Planck statement of the second law reads:
[1, p 89]

it is impossible to construct an engine which will work in a complete cycle, and
produce no effect except the raising of a weight and the cooling of a heat-reservoir.

Some other, essentially equivalent formulations of the law are possible—Thomson (later Lord
Kelvin) [2], Clausius [3] and Carathéodory [4] statements—but, for our purpose, we will refer
to the formulation posed above. Essentially the statement requires the presence of another
reservoir.

The development of the law needs the concept of ‘working fluid’, the substance that
undergoes the cyclic process. The properties of the working fluid are usually discarded because
the initial and final state of the fluid coincides and ‘it has done service only as a transmitting
agent in order to bring about the changes in the surroundings’ [1, p 68]. Nonetheless, the fluid
must be able to do ‘service’ in the way required.

In this paper, we show that a general property of the matter will restrict the ability of
working fluids to perform cycles, thus restricting what the Kelvin–Planck statement allows.
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http://stacks.iop.org/ja/36/7909


7910 J M Martı́n-Olalla and A Rey de Luna

We show that, in fact, such a restriction follows from a comprehensive interpretation of the
statement posed above.

The general property we are speaking about is nowadays known as the third law of
thermodynamics. The necessity and character of this law have been a matter of discussion
from the early years of the 20th century. Some chemical problems led Nernst [5, 6] to discover
his heat theorem which reads [6, p 85]:

in the neighbourhood of the absolute zero all processes proceed without alteration of
entropy.

The theorem—which classically does not follow from the Kelvin–Planck statement
[7, 8]—is supported by a formidable array of experimental data. We choose this older, though
very valuable, version for reasons that are disclosed in section 3 but we see no particular reason
for this statement to have been forgotten, other than it refers to properties of processes rather
than to properties of systems as is nowadays stated [9–13].

Nernst derived the theorem from two quite general observations. The first is the so-called
principle of unattainability of the zero isotherm, which recalls the fact that no process can
diminish the temperature of a system to the absolute zero. The second is the fact that the
specific heat of substances goes to zero as the temperature goes to zero.

It should be acknowledged that Planck [1] noticed that these observations should have
led to a ‘more comprehensive’ conclusion: ‘as the temperature diminishes indefinitely the
entropy of a chemical homogeneous body of finite density approaches indefinitely to a definite
value, which is independent of the pressure, the state of aggregation and of the special chemical
modification.’ The Planck formulation avoids the fact that �S → 0 while S → −∞ as T → 0
and thus expresses that the absolute value of the entropy is bounded in the absolute zero.

Yet, our work is just related to the analysis of �S since it just deals with the analysis of
the conversion of heat into work. This problem is insensitive to a translation of the value of
the entropy and, thus, Planck’s formulation lies out of our scope of interest. The same can be
said about the vanishing of the specific heats.

Modern approaches and presentations of the third law of thermodynamics usually relate
it to the microscopic properties of systems under consideration [14–18]. Some efforts have
also been made to clarify its macroscopic meaning [19–25].

The goal of this paper is a revision of the mathematical description of the statement of the
Nernst theorem posed above as well as its physical consequences. We study pure macroscopic
observations in the field of low-temperature physics. In so doing, no hypothesis about the
constitution of the systems under study will be considered.

Also, an energetic analysis of the consequences of the statement posed above is an aim
of this paper. In brief, the simplest, most efficient engine contains two processes in which
entropy is altered. This type of process is restricted at the neighbourhood of absolute zero by
the Nernst theorem; we will prove that such a restriction will lead to a further condition that
any engine must satisfy.

2. Limitations to the description of the Nernst theorem

The classical formulation of the Nernst theorem reads [9]: ‘the change in entropy associated
with any isothermal process between two states of a system in internal equilibrium vanishes
in the limit of zero temperature,’ which is usually translated into the mathematical condition:

∀x1x2 ∈ D lim
T →0+

[S(T , x1) − S(T , x2)] = 0 (1)
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Figure 1. T–S plot for the model equation (2). Iso-x lines are depicted. The unattainability
statement and equation (1) are satisfied for fixed x1 and x2. Yet an isentropic process (horizontal
left arrow) diminishes the temperature of the system arbitrarily. Also, any alteration of entropy
is possible in the neighbourhood of T = 0 (vertical double arrow) provided that x changes
appropriately.

where x is any mechanical variable such as volume, pressure or magnetic field and D ⊆ R is
its domain of definition1.

Landau and Lifshitz [10] showed the importance of keeping x1, x2 fixed in equation (1).
Otherwise, they said, if, for instance, x1 goes to infinity, the theorem may not be valid. In
general, it could be said that the description works fine if the values of x are indeed fixed, but
there are problems when looking for double limits of the form T → 0 and x → ∞.

An academic example of this problem is provided by the following naive model

S(T , x) = S0 + χT xg �⇒ S(T , x1) − S(T , x2) = χT
(
x

g

1 − x
g

2

)
(2)

with x ∈ R
+. In this expression, χ is a positive constant that fits the dimensions of the model.

Notice that equation (2) satisfies equation (1) but the double limit T → 0, x → ∞ depends
on the path achieved. Figure 1 depicts a T–S plot for a system satisfying equation (2).

The model does not fulfil the unattainability statement. First, it is true that for fixed x1 and
x2 the zero isotherm is unattainable [13]; this proposition is essentially equivalent to equation
(1). Yet, there is no need to do so if we want to achieve the neighbourhood of the zero isotherm
and it is also true that any isentropic path is endless for that model as, letting g > 0 and by
increasing indefinitely the mechanical parameter, the temperature is indefinitely decreased to
zero in a single step through T xg = cte. The ‘unattainability’ of the zero isotherm would be a
matter of practical limitations—how to get an infinite x—rather than a fundamental restriction
posed by a law of nature; strictly speaking, the absolute zero is here attained asymptotically.
1 Nernst himself clothed equation (1) through the statement posed in section 1 [6, p 85].
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Finally, neither does the model accomplish the words given by Nernst; see section 1. No
matter how close to zero the temperature can be, any alteration of entropy is possible provided
that the mechanical variable increases sufficiently.

The ideal gas behaves similarly to that model. A classical description of the particles
leads to an entropy with no lower bound and which does not accomplish the Nernst theorem.
On the contrary, a quantum description of the problem leads to [10, 15, 18] equation (2) where
x is the volume and g = 2/3 for fermions. A deep analysis of the model shows that the
quantum or classical description is driven by the condition [10, 14]

V

N

(
mkT

2πh̄2

)3/2

� 1

known as the ‘classical limit’. Here N is the number of particles, h̄ is the Planck constant, m
is the particle mass and k is the Boltzmann constant. Thus, the competition between T → 0
and V → ∞ is again crucial. It is likely that these contradictions are due to the fact that
interactions are unavoidable at the very limit T → 0 so that microscopically ideal models may
not be reflecting the array of data on macroscopic systems [14].

We have shown then that a model satisfying equation (1)—the classical description of the
Nernst theorem—does not lead to the unattainability statement. Even worse, it does not fit the
words of Nernst. Thus, further assumptions are required for a comprehensive and accurate
mathematical description of the empirical laws observed at very low temperatures.

3. The Nernst theorem as a uniform limit

The mathematical description of the statement of the Nernst theorem posed in section 1 is
improved by considering the following hypothesis I: the isothermal exchange of entropy is
uniformly vanishing as the temperature goes to zero

∀ε > 0 ∃δ(ε) > 0 : T < δ ⇒ |S(T , x1) − S(T , x2)| < ε. (3)

The key question of the ‘uniform convergence’ is that [26] the same δ(ε) fits for any x1, x2

belonging to D. It is straightforward that equation (3) matches the statement posed in
section 1. We will argue that it is the best choice to express mathematically that proposition.

The Nernst theorem is classically supposed to be restricting the functional dependence of
isothermal exchange of entropy �S = S(T , x2) − S(T , x1) on T so that it converges to zero at
the absolute zero. The ‘uniform’ condition, here presented, essentially means that no value of
x can challenge this convergence. That is, no accidental divergence can possibly occur for a
given value of x in the neighbourhood of T = 0. In this way, the Nernst theorem would also
restrict the functional dependence of �S(T , x) on x.

3.1. Role of x

If hypothesis I is taken into account, the mechanical variable plays no role in the description
of the problem. This is the primary consequence of the uniform convergence since given ε

then δ is just a property of the system under consideration regardless the value of x. The reader
should notice that this is a burden in the formulation of the Nernst theorem as a law of nature
which does not depend on the configuration of the system under consideration.

In the classical description of the theorem equation (1), δ is a function of ε, x1, x2 so the
mechanical variable does play a role in the description of the problem. Although this role is
usually discarded it is of the most importance when considering, for instance, double limits.
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3.2. Existence of inaccessible regions in a T–S plot

Equation (3) ensures that S(T , x1) − S(T , x2) is bounded in the neighbourhood of T = 0 so
that it has a supremum:

σ(T ) = sup
x∈D

{S(T , x1) − S(T , x2)}. (4)

The function σ exists and is a monotonically increasing function at least in the neighbourhood
of T = 0. The function depends on the thermophysical properties of the system under
consideration. In the following, we describe the relevant properties of the function in that
neighbourhood.

Now, we consider a system compliant with hypothesis I whose equilibrium state is defined
by a given temperature and a given mechanical configuration. The entropy of this state equals
S(T , x). Let us suppose that the entropy is isothermally increased, the existence of σ ensures
that the final entropy cannot exceed S(T , x)+σ . The same argument applies for a process that
decreases entropy. Hence, S(T , x) is an upper and lower bounded function of x for a given
temperature and the following functions exist:

Smax(T ) = sup
x∈D

{S(T , x)} Smin(T ) = inf
x∈D

{S(T , x)}. (5)

Since the stability condition (∂S/∂T )x > 0 holds in the neighbourhood of T = 0 (except
perhaps at T = 0) the preceding functions are increasing functions of T so that states of the
type {T , S > Smax(T )} and {T , S < Smin(T )} cannot exist. Hence, equilibrium states do not
fill the plane T–S and two boundaries arises from the fulfilment of the Nernst theorem as an
uniform condition.

In more detail it could be said that one of the goals of the third law is to ensure that
the entropy has a single value S0 in the neighbourhood of zero isotherm [9]. In the classical
formulation of the theorem, points of the type {T = 0, S 
= S0} are excluded [9, figure 23.5]
in a T–S plot (these points are shown by the symbol × in figure 2). From a physical point
of view ‘when a certain point is excluded, we must demand that the same must be true about
a small region surrounding the point’ [4], [27, p 236]2. On the contrary, if a neighbourhood
of {T = 0, S 
= S0} could be reached, the exclusion of those—isolated—points would be
fictitious.

Thus, the plot T–S (see figure 2) consists in the region I of allowed values of {T , S}, and the
forbidden region II. The existence of region II is a goal of hypothesis I. The boundaries, which
may or may not be physically accessible, do not coincide with the axis T = 0. In figure 2
and in the preceding discussion we have made use of the Planck hypothesis for the purpose of
clarity. The same argument would apply if S0 comes down to −∞ and, simultaneously, �S

is vanishing.
The following issue is known, however hypothesis I enriches and clarifies its meaning.

3.3. Processes that come to an end (unattainability statement)

Let us consider the isentropic process S = �0 starting at some temperature so that
Smin < �0 < Smax. The process will go on until the temperature T1 defined by Smax(T1) = �0

is attained. This temperature is non-zero.

2 Carathédory is here speaking about the adiabatic inaccessibility and he is preparing his celebrated axiom II. It is
worth noting that the axiom literally states that ‘(· · ·) there exist states that cannot be approached arbitrarily close
by adiabatic process’ instead of the bare phrase, ‘states that are inaccessible by adiabatic process.’ The concept
‘arbitrarily close’ or ‘neighbourhood’ will play a leading role in the following discussion.
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Figure 2. The T–S plot and the Nernst theorem. The symbol × represents the points classically
excluded by the theorem [9, figure 23.5]. A more comprehensive analysis of the theorem reveals
that there exist a region I, whose points represent equilibrium states, and a region II, which does
not do so. The cycle 1–2–3–4–1 is an engine consisting of two isotherms 1–2 and 3–4, and two
processes, 2–3 and 4–1, which differ just in a shift of entropy S′ = S +	. Area 1–2–3–4–1 is equal
to 	[T − σ−1(	)] as in a Carnot engine. The essential of this picture is valid even if S0 → −∞
while �S → 0.

Here we may decrease the entropy of the system isothermally until the condition
�1 = �0 − σ(T1) = Smin(T1) is achieved. At that point, an isentropic process will cool
the system down to the temperature T2 defined by Smax(T2) = �1.

The endless staircase process that goes to absolute zero is then defined.

3.4. Vanishing of the thermal expansions coefficients

The thermal coefficients are related to the derivative (∂S/∂x)T through Maxwell’s relations
[9]. From equation (3) we derive the vanishing of such a derivative since:

lim
T →0

(
∂S

∂x

)
T

= lim
T →0

lim
x ′→x

S(T , x ′) − S(T , x)

x ′ − x
∀x ∈ D.

If this double limit exists, it can be computed in whichever order. By taking first T → 0 and
invoking equation (3) we has, of necessity [9]:

lim
T →0

(
∂S

∂x

)
T

= 0 ∀x ∈ D. (6)

Unlike the properties of sections 3.1 and 3.2, which are mathematical propositions, it
should be pointed out that the properties of sections 3.3 and 3.4 are trends [6, 9] amply
confirmed by experiment providing a support for the hypothesis. Yet, the most important
consequence of the hypothesis relates it to the problem of the conversion of heat into work;
this is considered in detail in the following section.
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4. The Nernst theorem and the continuous production of work

In section 3 we have shown that the Nernst theorem forces the existence of forbidden regions
in a T–S plot. We now derive the consequences for the continuous production of work, bearing
in mind that the uniformity condition introduced in section 3 means that x plays no role in the
problem.

Let us now consider the following question. We wish to build up an engine which produces
mechanical work W by using a given working fluid that draws a given amount of heat Q from
a reservoir of a given temperature T; what is the minimal amount of heat Q′

min that is to be
taken up to the cold reservoir?3

The classical reading of the Kelvin–Planck statement would just say that the heat taken up
at the cold reservoir (hereafter called ‘compensation’) must be non-zero Q′ 
= 0. It then seems
that, as far as this statement is concerned, a negligible Q′ would suffice. Thus, Q′

min = 0+, i.e.
arbitrarily close to zero but positive and non-zero. The answer is independent from Q,T and
the working fluid and comes from the fact that we feel free to place a two-reservoir engine in
a T–S plot since there happens to be no other restriction.

A machine having Q′
min = 0+ would result in an efficiency η = W/Q as close to unity

as desired; this most efficient engine has never been built. We now put forward the fact that
this is due to fundamental properties of matter despite practical limitations to achieving such
an engine.

As a general rule, σ (see equation (4)) is non-zero for non-zero temperatures and from
equations (3) and (4) we obtain

∀ε > 0 ∃δ(ε) > 0 : T < δ �⇒ σ(T ) < ε (7)

i.e. limT →0+ σ(T ) = 0.
In equation (7) there is no need to call for absolute value delimiters since both T and σ

are positive magnitudes. From equation (7) and the preceding argument, the existence of the
inverse function σ−1(	) is straightforward. In fact, the inverse function is nothing else but a
suitable representation for the parameter δ(ε). The inverse function gives the temperature at
which the width in entropy of the accessible states equals 	. This temperature also depends
on the thermophysical properties of the system under consideration.

Now, let us consider again the question posed at the beginning of this section but we now
consider that the Kelvin–Planck statement and the Nernst theorem apply, as stated in section 1.
Hence, the restrictions posed in section 3, shown in figure 2, are valid. The working fluid
undergoes a cycle that is extracting an amount of entropy 	 = Q/T from the hot reservoir.
In doing so, it is necessary that 	 < σ(T ).

Now, the entropy should be being deposited into the cold reservoir which would receive
an amount of heat Q′. To achieve the maximum efficiency, the temperature of the cold
reservoir must be the coldest temperature able to exchange with the working fluid that amount
of entropy. Following the preceding paragraphs, the minimal temperature is given by σ−1(	)

which is a property of the fluid under consideration. Thus,

∀Q 
= 0, T 
= 0 :
Q

T
= 	 < σ(T ) �⇒ ∃σ−1(	) : Q′ � 	 × σ−1(	) = Q′

min. (8)

This most efficient engine is depicted in figure 2 by the cycle 1–2–3–4–1, which consists of
two isotherm and two processes that differ in a shift of entropy; exchanges of energy and

3 This question inspects the behaviour of W , or Q′, once the hot reservoir and the absorbed heat are fixed. It is also
customary to inspect the behaviour of W once the hot and cold reservoirs are fixed. This problem is related to the
concept of irreversibility [10] and lies out of the scope of the following discussion.



7916 J M Martı́n-Olalla and A Rey de Luna

Figure 3. Plot of 	 − Q′ for a given working fluid. A point of region I, say a, represents a set of
engines each having the same Q′ and 	 and the same temperature of the cold reservoir (the slope
of the straight line). The thick line, which depends on the working fluid, represents equation (8)
and comes to {0, 0} with zero slope. For the working fluid under consideration, it is impossible
to build an engine that enters in region II. The symbol × represents the restriction posed by the
classical reading of the Kelvin–Planck statement.

entropy in 2–3 cancel with those of 4–1 so the reservoirs needed for these two processes play
no role in the problem4. The performance of work equals Wmax = 	 × [T − σ−1(	)].

It is very noticeable that the value of Q′
min is now a function of the parameters of the

problem: Q,T and the working fluid which enters through σ−1. Moreover, the minimal
compensation is a function of the exchange of entropy 	.

Although the particular value of Q′
min depends on the thermophysical properties of the

working fluid, it is a fact worth noting that, as a general rule, Q′
min is never arbitrarily close to

zero for a given 	 since, according to the Nernst theorem, σ−1 is not arbitrarily close to zero
either (see figure 2).

The universal resemblance of equation (8) allows us to outline the plot 	 − Q′ (see
figure 3). Note that, in the context of the classical reading of the Kelvin–Planck statement,
this plot would have no restriction other than the exclusion of the points of the type
{	 
= 0,Q′ = 0}; these points are shown in the figure by the symbol ×. Now, if we
take into account the Nernst theorem it is clear that points of the type {	,Q′ < Q′

min(	)}
should also be excluded. The points define a region whose boundary is given by equation (8);
the analogy between regions I and II, and the boundary of figure 2 and those of figure 3 is
immediate. From the Nernst theorem it is easily proven that Q′

min goes to zero with zero slope
as 	 goes to zero. Summarizing the meaning of figure 3 it should be stressed that the Nernst
theorem excludes a region around those points actually excluded by the classical reading of

4 It would be possible to decrease Q′ by considering the cycle 1–2–3–5–4–1 (see figure 2) because entropy will be
deposited to colder reservoirs, but the condition of two reservoirs is broken. However, in that case, the compensation
is equally expressed by σ ′′	 where σ ′′ is an unknown temperature ranging between T5 and T4 = σ−1(Q/T ). The
essential of the following discussion also applies to this compensation.
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the Kelvin–Planck statement. This is in agreement with Carathéodory’s argument posed in
section 3.

The limit 	 → 0+ is the unique possibility to obtain Q′
min → 0+. In this case, taking

T as a bounded, constant parameter, it is clear that Q will also vanish and, as an ultimate
consequence, W will also vanish. Hence

Q′ → 0+ �⇒ W → 0+. (9)

This proposition contains the essence of the Nernst theorem. Its dramatic meaning is best
viewed noticing that Q′ → 0+ and η → 1− are equivalent. This then means that as the most
efficient engine is achieved, the delivery of work is decreasing to zero.

It should be pointed out once again that, in the preceding discussion, x plays no role and it
is in this sense that the restrictions figure 3 and equation (9) are universal. This feature comes
from the property of uniformity. On the contrary, if the Nernst theorem is just considered as
a limit, without the requirement of uniformity, then equation (9) and figure 3 would be just
valid for transitions between two given values of x; see [9, figure 23.9] and [23]. Therefore,
equation (1) does not lead to any proper restriction, as the boundary of figure 3 will come
arbitrarily close to the restriction posed by the classical reading of the Kelvin–Planck statement
provided that we consider the appropriate values for x1 and x2. Hence, the improvement of an
engine would be a matter of practical limitations if equation (1) were valid5.

5. The Nernst theorem and the statement of the second law

Section 4 clearly shows that the Nernst theorem is restricting the conversion of heat into work
in a way which is independent from the mechanical configuration of the system. It should be
desirable to link it to the Kelvin–Planck statement of the second law.

One of the most important results of section 4 is the leading role played by Q′, the
compensation, in the problem of the conversion of heat into work. This importance comes
from the fact that its minimum value is universally expressed by equation (8).

From a historical point of view, the role of the cold reservoir was the key of the second
law. The first known statement of the law, due to Kelvin [2], stated that it is impossible to
build an engine that both produces work and cools the coldest of the available reservoirs, no
matter what happens to hotter reservoirs (see figure 4).

Planck simplified the statement by noticing that it is impossible to build an engine that
performs work by cooling just one reservoir [1]. In that sense, a cold reservoir is to be heated
(compensation) in some amount (see figure 4). Yet he said nothing about the ‘size’ of the
compensation so that we hope it might be negligible; this is the ‘classical’ reading of the
statement that has prevailed from the beginning of the statement.

Furthermore, if the Nernst theorem is taken into account through hypothesis I, we obtain
the ultimate restriction. A minimal compensation is given by the properties of the working
fluid and the exchange of entropy (see equation (8) and figure 4): if you wish to transform a
finite amount of heat into work, you must certainly pay a tax (a compensation), namely the
tax does not become finiteless at your willing. The emphasized proposition is an informal
statement for equation (9).

The reader should notice that, in fact, equation (9) is something more than the bare
statement of the Nernst theorem since it also recalls the Kelvin–Planck statement. This is the
dome that crowns the leitmotif of the principles of thermodynamics by putting forward the
ultimate restriction on Q′. In fact, if the relation were clothed in a negative way, the reader
5 If the working fluid behaves like equation (2), the engine could always be improved by obtaining arbitrarily large
values of x.
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Figure 4. The staircase of the statements of the second law. The reader should notice the
restrictions on the compensation that arises from the violations of the statements. From left to
right, we have a violation of the Kelvin statement, of the classical reading of the Kelvin–Planck
statement, and of a ‘comprehensive’ reading of the Kelvin–Planck statement. In this last case,
Q′

min is given by equation (8).

would have found a statement very much like any of the second law: it precludes delivering
a finite work without a finite compensation.

6. From the Kelvin–Planck statement to the Nernst theorem

The preceding sections analysed the Nernst theorem through hypothesis I, putting forward
its close relation to the problem of the conversion of heat into work. Here we want to do
the reverse: starting at the Kelvin–Planck statement, upon which assumption hypothesis I is
derived.

In our opinion, the classical reading of the Kelvin–Planck statement could be said to be
‘crude’ in the sense that the cause (heat absorbed from the hot reservoir) and the unavoidable
effect (the minimal compensation) has been taken as uncoupled since the early stage of
thermodynamics. A more comprehensive reading of the statement of the second law would
have led to some coupling between Wmax or Q′

min and Q since a finiteless absorbed heat is
necessary to obtain a finiteless compensation; see equation (8) and figure 2. We now put
forward the fact that this hypothesis, called hypothesis II, suffices for the Nernst theorem:

the compensation of a Carnot engine approaches indefinitely zero only if the heat
absorbed from the reservoir is vanishing.

The significance of the hypothesis would be revealed by the conclusions that it draws,
however the reader should not conclude that hypothesis II is additional to the Kelvin–Planck
statement since it is embedded in its words. The point is the meaning of the word ‘effect’
that appears in the statement. We can explicitly obtain hypothesis II by changing ‘effect’ into
‘finite effect’ in the statement so that any ‘finite’ absorbed heat necessarily leads to a ‘finite’
compensation. But, in fact, any effect is actually finite so that the modification would be a
pleonasm.
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The fact that the hypothesis leads to the Nernst theorem is surprisingly straightforward.
Notice that the compensation of an engine equals Q′ = T ′ × 	 where T ′ is the temperature
of the cold reservoir and 	 is the exchange of entropy. The magnitude becomes zero (1) if
T ′ goes to zero regardless 	 or (2) if 	 goes to zero regardless T ′. The hypothesis excludes
option (1), i.e. it excludes any alteration of entropy in the neighbourhood of absolute zero.
Hence, the Nernst theorem as stated in section 1 and as analysed in section 3 comes of
necessity.

It is then concluded that hypotheses I and II are equivalent propositions so that the Nernst
theorem ultimately follows from a comprehensive reading of the Kelvin–Planck statement
through hypothesis II6. This proposition is valid as far as systems suitable to be working fluids
of engines are considered.

7. Discussion and conclusion

In 1909, Carathéodory [4], following a suggestion by Born, successfully translated the classical
statements of the second law, which deal with the problem of production of work, into a
statement which refers to physical properties of an isolated system. This work introduces the
reverse trip for the Nernst theorem. The theorem has been supposed to deal with the properties
of systems in the neighbourhood of T → 0; the study here presented (see section 4, especially
equations (8) and (9)) relates the theorem back to the problem of production of work. The
theorem expresses a universal property of the continuous production of work.

The reader may ask which assumptions make the Nernst theorem independent from the
Kelvin–Planck and which do not. The goal of the second law of thermodynamics is to
restrict the continuous production of work putting forward the existence of a fundamental
asymmetry: work is dissipated into heat but the reverse is not true. The goal enters by a
statement which expresses, in words, a restriction. We have shown in this paper that the
degree of restriction matters and has an influence on the properties of systems. The classical
reading of the Kelvin–Planck statement assumes just that the compensation is non-zero. Upon
this assumption the general properties of systems in the neighbourhood of T = 0 need to be
summarized as an independent law. Yet, a comprehensive reading of the statement through
the cautious hypothesis II presented in section 6 leads to some of these general properties: the
unattainability statement and the vanishing of the expansion coefficients. We should again
recall that the formulation presented here is insensitive to whether or not specific heats come
to zero as the temperature comes to zero.

The new reading of the statement overcomes the embarrassing fact that W must differ
from Q (to what extent?) by stating that they must do so in a measurable quantity which
also depends on the working fluid which does play a role in the problem. The words of
Carathéodory quoted in section 3 again make sense in this discussion: if the condition W = Q

is excluded, W = Q− should have been excluded as well7.
Any exception to the hypotheses would result in a failure of the consequences quoted in

sections 3.3 and 3.4: (a) an experiment that would allow 1/T to increase indefinitely; (b) an

6 Thus, the second law ensures that the entropy goes to a value which does not depend on x at the absolute zero.
Its precise value, or whether this value is finite or infinite (Planck’s formulation) is alien to this description since the
second law just concerns variations of entropy.
7 We present an analogy between the words of Carathéodory and the results of this work. It is not our wish to state
that the former derives from the latter or conversely. It is a coincidence of sorts that both problems speak about the
same law of nature.
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experiment that would allow entropy to decrease indefinitely; or (c) a substance that would
have non-zero thermal expansion coefficients8.

It is out of the scope of this paper to describe the microscopic relevance of the hypothesis,
i.e. to determine which kind of Hamiltonians (interactions) would lead to uniformly vanishing
�S as well as their symmetry properties. Well-known models, especially ideal gases, do not
satisfy the hypotheses presented here. However, the reader should not consider them as an
‘exception’ to the hypotheses since the hypotheses are grounded on experimental macroscopic
basis and not on the analysis of microscopic models.

The relation between interactionless models and the Nernst theorem has been recently
suggested [14, 17] and it seems that the role of interactions cannot be neglected in real
systems at sufficiently low temperatures. The suggestion comes from the analysis of the
independent spin system. The model does not satisfy the Nernst theorem since the ground state
is degenerate. Yet, independent spin systems do not occur in nature since real solids always
exhibit magnetic correlation and ordering at sufficiently low temperatures. The resulting
ordering, usually a macroscopic new phase, either ferromagnetic or antiferromagnetic, would
satisfy the Nernst theorem.

Quite the same analysis can be made on free particle systems. The reader should notice
that the classical ideal gas allows us to envision a process of types (a) and (b); moreover it
satisfies (c) in contradiction with the Nernst theorem. On their own, quantum ideal gases
[10] obtain vanishing thermal expansion coefficients and preclude experiments of type (b)
since entropy is necessarily a low bounded function. Yet, the quantum model still allows
us to envision type (a) experiments which do not occur in nature and which do preclude the
meaning of the Nernst theorem. Of course, in real systems ‘ordering’ does always occur and
the settlement of condensed phases seems unavoidable.

It is then likely that interactionless models, either kinetic, magnetic or whichever, do
not accurately describe the properties of real systems at sufficiently low temperatures since
interactions cannot be neglected.
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for enlightening them with the uniform convergence. The authors also thank Ms Pilar Núñez
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